
The Classes in the GenVector Package

M. Fischler

December 13, 2005

Abstract

The GenVector package is intended to represent physicals vectors and transfor-
mations (such as rotations and Lorentz transformations) in 2, 3, and (space-time) 4
dimensions, providing models and capabilities attuned to the needs of High Energy
Physics codes.

Here we describe each class present, along with all the member functions and asso-
ciated functions which users can count on.

Contents

1 General Information

The GenVector package provides class templates for classes modeling vectors and transfor-
mations.

There is a user-controlled freedom as to how the vector is internally represented. This is
expressed by a choice of coordinate system; the coordinate system is supplied as a template
parameter when the vector is constructed. A coordinate system can be one of several choices
(Cartesian, Polar, and so forth) in 2, 3, or 4 dimensions–thus the choice of coordinate system
simultaneously dictates the dimensionallity of the vector.

There is a further degree of control: Each coordinate system is itself a template so that
the user can specify the underlying scalar type. For example, Cartesian3D<double> is a
coordinate system.

The transformations are modeled simple (non-template) classes, using double as the
scalar-type. For the purposes of understanding the classes available, the transformations are
grouped: Rotations (in two and three dimensions), Lorentz transformations, and Poincare
transformations, which are Translation/Rotation combinations. Each group has several
members, which may model physically equivalent transformations but with different internal
representations. For example, a Rotation may be kept as a 3x3 matrix (Rotation3D) or as
an axis and angle of rotation (AxisAngle).

Some instantiations of the templates are given special names for convenience and brevity.
For example, XYZVector is typedef-ed to DisplacementVector< Cartesian3D<double> >

1.1 Classes (and Class Templates)

The user of the GenVector package normally instantiates and invokes member and other
functions involving objects of the following classes:

1

2 1 GENERAL INFORMATION

DisplacementVector3D – Class template (the template parameter is the coordinate sys-
tem to use) modeling an abstract 3-component direction-and-magnitude vector, not
rooted at any particular point.

PositionVector3D – Class template modeling a point in 3-space.

LorentzVector – Class template (the template parameter is the coordinate system to use)
modeling a 4-vector in Minkowski space, intended to represent a momentum-energy
4-vector.

DisplacementVector2D – Class template modeling an abstract 2-component direction-
and-magnitude vector, not rooted at any particular point.

PositionVector2D – Class template modeling a point in 2-space.

Rotation3D – Class representing a 3-D rotation by a 3 × 3 orthogonal matrix.

AxisAngle – Class representing a 3-D rotation by a unit vector axis and an angle of
rotation.

EulerAngles – Class representing a 3-D rotation by a its three Euler angles.

Quaternion – Class representing a 3-D rotation by the four components of the corre-
sponding quaternion. The Quaternion representation is significantly more efficient
when multiplying several rotations, but less effecient when applying a rotation to a
vector.

RotationX – Class representing a 3-D rotation about the X axis by the angle of rotation.
For efficiency, the sine and cosine of the angle of rotation are held.

RotationY – Class representing a 3-D rotation about the Y axis by the angle of rotation.
For efficiency, the sine and cosine of the angle of rotation are held.

RotationZ – Class representing a 3-D rotation about the Z axis by the angle of rotation.
For efficiency, the sine and cosine of the angle of rotation are held.

LorentzRotation – Class representing a 4-D rotation (in Minkowski space) by a 4 × 4
orthosimplectic matrix.

Boost – Class representing a pure Lorentz Boost, which is a special case of LorentzRotation,
by the components (βx, βy, βz). For efficiency, γ is held as well.

BoostX – Class representing a Lorentz Boost along the X axis, by βx. For efficiency, γ is
held as well.

BoostY – Class representing a Lorentz Boost along the Y axis, by βy. For efficiency, γ is
held as well.

BoostZ – Class representing a Lorentz Boost along the Z axis, by βz. For efficiency, γ is
held as well.

Rotation2D – Class representing a 2-D rotation by the angle of rotation. For efficiency,
the sine and cosine of the angle of rotation are held.

In addition, the following classes are provided so as to allow user control of the coordinate
systems used internally by vectors. The headers for these classes are of necessity publicly
available, but the only normal usage will be to supply a coordinate system class as a template
parameter to a vector class template to specify the coordinates (and Scalar type) to use.

1.2 Properties Common to Every Class 3

Cartesian3D The usual Cartesian (x, y, z).

Polar3D Spherical polar coordinates (r, θ, φ).

CylindricalEta3D Cylindrical coordinates (ρ, η, φ), where η ≡ log(
z+

√
ρ2+z2

ρ
). Special

handling is done for vectors along the Z axis (ρ = 0) to be able to recover the vector
in other coordinate systems.

PxPyPzE4D The usual “Cartesian” Minkowski coordinates, with time-like component
last. Although the name implies this models a momentum-energy 4-vector, it can
equally well be thought of as (x, y, z, t).

PtEtaPhiE4D (p⊥, η, φ, E). The transverse momentum acts as ρ, and the rapidity, az-
imuthal angle, and energy complete the description of a 4-Vector. This system has
been called 4-D CylindricalEta coordinates.

PtEtaPhiM4D (p⊥, η, φ,m). The mass is used in place of the energy. This system can be
thought of as the outer product of 3-D CylindricalEta coordinates, with an arbitrary
mass value.

EEtaPhiM4D (E, η, φ,m). The energy is used in place of the transverse momentum.
This completes a set of descriptions involving (η, φ) to specify the direction of the
momentum: On can specify any two of energy, mass, or magnitude of momentum to
specify the momentu-energy 4-vector.

Cartesian2D The usual Cartesian (x, y).

Polar2D Polar (r, φ).

Note that the 4-D coordinate systems make use of the relativistic relation among energy,
mass and momentum, taking c = 1.

1.2 Properties Common to Every Class

By “every class in this package” we include, of course, every class obtained by instantiating
some template in the GenVector package. These include coordinate systems, vectors, and
transformations.

Every class and free method is in the namespace ROOT::Math::.

Every class is default constructible, copy constructible, and copy assignable.

Every class is dependent on some real type to be used for scalars, and contains a typedef
Scalar to publish that type.

Every class is equality comparable (for equals and not-equals) against objects of the
identical type. The usual warnings about comparing two floating point numbers for equality
apply. In addition, if the two objects have different component values which represent
equivalent physical properties (for example, two AxisAngles with both the axes and angles
negative of one another), the objects will compare as being unequal.

Every class has operators << and >> to ostreams and from istreams respectively, which
produce and read back human-readable output representing the vectors or transformations.
In addition, every class responds to the one-shot manipulator ROOT::Math::machine_readable
to produce (and read back) data such that the result after read-back is portably identical
to the instance output.

4 1 GENERAL INFORMATION

using namespace ROOT::Math;

{std::ofstream os ("filename");

XYZVector v (1, 2, 3);

v /= 3;

os << v;

os << machine_readable << v;

}

{std::ifstream is ("filename");

XYZVector v;

is >> v;

assert(v != XYZVector(1,2,3)/3;

is >> machine_readable >> v;

assert(v == XYZVector(1,2,3)/3;

}

In the example above, the first input of v would not give an exact reproduction because
the human readable output was rounded at 6 digits (or whatever precision had been set for
floating point output). The second input of v would give an exact reproduction.

1.3 Naming Conventions

As part of the LCG core math library, the GenVector package adheres to the prescribed
naming and namespace conventions, with (approved) exceptions as described here:

• Every class, function, manipulator, or other symbol defined in the package is in the
ROOT::Math:: namespace.

• Member function names start with an upper-case letter, as dictated by the ROOT
naming conventions.

• Data members of classes are kept private, and start with the letter f followed by an
upper-case letter.

1.4 Behavior in Exceptional Circumstances

As dictated by the core math library architects, the GenVector package avoids throwing
exceptions in cases where sensible behavior can be framed in terms of returning or producing
infinities, NAN’s, or other special values. For example, when dividing a vector by a scalar,
the implementation does not check for a zero divisor; the rules of IEEE arithmetic provide
for sensible infinities to be placed in the answer. As a more complex example, if a vector in
clyndrical eta coordinates is constructed from a vector lying on the Z axis, the value of eta
produced will be a special value, impossible to produce from any non-Z-axis vector, allowing
for recovery of the correct Z value.

When sensible behavior cannot be framed, under some circumstances the package sug-
gests throwing a GenVector_exception. This exception inherits from std::runtime_error

and holds an explanatory string which can be queried by the what() method. However, the
throw is done by calling Throw(GenVector_exception&), which by default does nothing
and returns. Then some non-catastrophic continuing action is taken. To enable actual
throws in these circumstances, the user invokes GenVector_exception::EnableThrow().

Implementation of member functions may detect certain operations which are logically
erroneous. Cases where violation of the proper conditions does not necessarily lead to

1.5 GenVector Utilities 5

catastrophic states are dealt with by checking via an assert; these checks can be removed
in non-debug builds.

1.5 GenVector Utilities

There are provided separate functions which perform less fundamental actions on the various
GenVector classes. These utilities are provided via separate headers, and are described in a
separate document.

1.6 Headers and Dependencies

Every class has a pair of corresponding headers (with extension .h): A header containing
the full class or class template definition, matching the name of the class (for example,
Rotation3D.h) and a “forwarding header” with the letters fwd, containing only declarations
of the class or class template (for example, Rotation3Dfwd.h). Headers freely include each
other’s forwarding headers, but inclusion of the full headers is organized so as to minimize
coupling and avoid circular dependencies.

• The various coordinate system classes include no other user-relevant headers.

• The various vector classes include the Cartesian coordinate system class of the ap-
propriate dimensions. If a user wishes to use any other specific coordinate system to
instantiate a vector class, the relevant coordintate system header must be included in
the user code.

• PositionVector3D includes the header for DisplacementVector3D because opera-
tions involving mixtures of the two are expressed in the PositionVector3D header.
This choice of dependency is not arbitrary: The difference between two position vec-
tors is a displacement vector, thus the dependency in this direction is necessary, whilst
the difference between two displacement vectors remains a displacement vector.

• The various rotation and transformation classes include each of the vector classes in
their respective dimensions and all higher dimensions, so that the operator of appli-
cation of the rotation to each type of vector can be expressed.

2 Coordinate Systems

The coordinate system class templates are provided primarily to allow the user to specify
which coordinates should be used by a vector class for its internal representation.

These are templates with the type of real variable to use for the coordinates specified as
a parameter. This real type is published as a typedef Scalar, and defaults to double.

There are three groupings of coordinate systems: 2-D coordinates, 3-D coordinates, and
4-D coordinates.

Should the user wish to use these classes independantly, they have common member
functions as described below.

Every coordinate system class in the N -D group is constructible from N Scalars repre-
senting the N coordinates to be used.

Every coordinate system class in theN -D group has member function SetCoordinates()

and GetCoordinates(). These are present in two signatures: A form taking N Scalars

6 2 COORDINATE SYSTEMS

representing the N coordinates to be used, and a form taking a an array which is assumed
(without checking) to contain N Scalars.

Every coordinate system class is constructible and assignable from an instance of any
other coordinate system in its group. This is implemented without introducing cross-
dependencies other than forwarding headers.

Every coordinate system class has a member function Scale(Scalar a) which scales
the vector by multiplying by a. For example, in polar coordinates, scaling by two would
mean doubling the value of r. Every coordinate system class also has a member function
Negate() which turns the vector into its additive inverse (this is not, except in Cartisian
coordnates, the same as negating each coordinate!).

2.1 3-D Coordinate Systems

The 3-D coordinate systems in the GenVector package are:

Cartesian3D (x, y, z) Cartesian coordinates.

Polar3D (r, θ, φ) spherical coordinates.

CylindricalEta3D (ρ, η, φ) cylindrical eta coordinates (η ≡ tan−1(ρ/z)).

Each coordinate system class in the 3-D group contains the following methods returning
a single real of the Scalar type established for that class, to obtain information about a
component or property of a vector:

X()

Y()

Z()

R()

Theta()

Phi()

Rho()

Eta()

Mag2() ≡ r2

Perp2() ≡ ρ2

x() ≡ X()

y() ≡ Y()

z() ≡ Z()

Each coordinate system class in the 3-D group contains three member functions taking
a Scalar agument, to set the value of one individual component used in the coordinate
representation, leaving the other two unchanged:

Cartesian3D has SetX(), SetY(), SetZ().

Polar3D has SetR(), SetTheta(), SetPhi().

CylindricalEta3D has SetRho(), SetEta(), SetPhi().

2.2 4-D Coordinate Systems 7

2.2 4-D Coordinate Systems

The 4-D coordinate systems in the GenVector package always represent vectors in Minkowski
space. They are intended to model momentum-energy 4-vectors, and depending on the
choice of coordinate system, the components will represent properties (such as angles and
transverse magnitudes) of the momentum, energy or transverse energy, and/or mass. (Of
course the properties are chosen such that a vector in any 4-D coordinate system represents
one unique (px, py, pz, E) 4-vector.)

The 4-D coordinate systems in the GenVector package are:

PxPyPzE4D The standard “Cartesian” (px, py, Pz, E) relativistic 4-vector coordinates.

PtEtaPhiE4D (p⊥, η, φ, E) “4-D cylindrical eta” coordinates (η ≡ tan−1(p⊥/z)).

PtEtaPhiM4D (p⊥, η, φ,m) coordinates.

EEtaPhiM4D (E, η, φ,m) coordinates.

Each coordinate system class in the 4-D group has a constructor and SetCoordinates()

and GetCoordinates() method taking a 3-vector for the spatial momentum coordinates
followed by a Scalar energy. The 3-vector object have implement member functions x(), y(),
and z(); it would normally be a DisplacementVector. In this form of constructor compo-
nent access, if the timelike component in the 4-D coordinate system is kept as something
other than the energy (for example, as the transverse energy or the mass) the appropriate
physics is applied to do the conversion.

Each coordinate system class in the 4-D group contains the following methods returning
a single real of the Scalar type established for that class, to obtain information about a
component or property of a momentum-energy 4-vector:

Px()

Py()

Pz()

E()

M() ≡
√
m2

M2() m2 ≡ E2 − p2

P() |p| ≡
√

p2
x + p2

y + p2
z

P2() ≡ p2

Pt() transverse momentum p⊥ ≡
√

p2
x + p2

y

Pt2() ≡ p2
⊥

Mt() transverse mass mt ≡
√

m2 + p2
⊥

with sign matching m

Mt2() ≡ m2
t

Et() transverse energy Et ≡ p⊥
√

1 +m2/p2

Et2() ≡ E2
t

Phi()

Theta()

Eta() ≡ tan−1(p⊥/pz)

The following are alternative names for these accessors:

X() ≡ px

8 2 COORDINATE SYSTEMS

Y() ≡ py

Z() ≡ pz

T() ≡ E

R() ≡ |p|
Mag() ≡ m

Mag2() ≡ m2

Rho() ≡ p⊥

Perp() ≡ p⊥

Perp2() ≡ p2
⊥

x() ≡ px

y() ≡ py

z() ≡ pz

t() ≡ E

Each coordinate system class in the 4-D group contains three member functions taking
a Scalar agument, to set the value of one individual component used in the coordinate
representation, leaving the other two unchchanged.

PxPyPzE4D has SetPx(), SetPy(), SetPz(), SetE(). PtEtaPhiE4D has SetPt()

SetEta(), SetPhi() SetE(). PtEtaPhiM4D has SetPt() SetEta(), SetPhi() SetM().
EEtaPhiM4D has SetEta(), SetPhi() SetM(), SetE().

2.3 2-D Coordinate Systems

The 2-D coordinate systems in the GenVector package are:

Cartesian2D (x, y, z) Cartesian coordinates.

Polar2D (r, φ) spherical coordinates.

Each coordinate system class in the 2-D group contains the following methods returning
a single real of the Scalar type established for that class, to obtain information about a
component or property of a vector:

X()

Y()

R()

Phi()

Mag2() ≡ r2

x() ≡ x

y() ≡ y

Each coordinate system class in the 2-D group contains three member functions taking
a Scalar agument, to set the value of one individual component used in the coordinate
representation, leaving the other one unchanged. Cartesian2D has SetX(), SetY().
Polar2D has SetR(), SetPhi().

9

3 Vectors

The vector class templates are provided to represent vectors (in the physics sense) in 2, 3,
and Minkowski space 4 dimensions. Each template takes, as its sole template parameter,
the coordinate system which the user desired be used to represent vectors. As a side effect,
since coordinate systems themselves are tempated off the type of real number to be used
as scalars, the user is also in control of whether the vector class instantiated uses floats,
doubles, or long doubles.

In two and three dimensions, the package makes a distinction between vectors represent-
ing positions relative to some given origin, and vectors representing displacements. The dis-
tinction comes in what operations are meaningful. For example, it is physically meaningless
to add a position to another position, yet it is absolutely useful to add two displacements.

In four dimensions, since the important use of the vector is to represent a momentum-
energy 4-vector, operations which make sense in that context are provided.

Every vector class publishes a typedef for CoordinateType which allows user code to
determine the coordinate system specified, as well as a typedef for Scalar (which will match
the Scalar type for the coordinate system).

There are various ways of constructing each vector class; in all cases, the set of assignment
operators matches the set of constructors taking single arguments.

The vector classes are each equality comparable (operator == and operator != but
only with objects or the identical class (including coordinate system used). Checks for
equivalence of two vectors in different coordinate systems can be done by converting one to
the system of the other.

None of the vector classes have methods to rotate the vector. To rotate a vector, one
instantiates the desired rotation object, and applies that to the vector.

3.1 DisplacementVector3D and PositionVector3D

The DisplacementVector3D class template models an abstract 3-component direction-and-
magnitude displacement vector. The PositionVector3D class template models a point or
position in 3-space.

Headers XYZVector.h and XYZPoint.h are provided. These simply include Displace-
mentVector3D.h and PositionVector3D.h, respectively, along with Cartesian3D.h, and pro-
vide typedef aliases:

typedef DisplacementVector3D< Cartesian3D<double> > XYZVector;

typedef PositionVector3D < Cartesian3D<double> > XYZPoint;

This gives managable names to these commonly used forms (double precision, in Cartesian
coordinates).

3.1.1 Construction and Coordinate Access

Instances of either of these classes are default constructible (the zero vector) and con-
structible from 3 Scalars representing the coordinates to be used; the meaning of the
coordinates depends, of course, on the coordinate system specified.

Templated constructors are provided to construct instances of either of the 3-D vector
classes from an arbitrary “foreign” vector. The precondition imposed on this foriegn vector
is that it have const methods x(), y(), and z(). In particular, the CLHEP ThreeVector

class meets this condition, so these vector classes can be constructed from the CLHEP class.

10 3 VECTORS

Explicit constructors for DisplacementVector3D from an arbitrary DisplacementVector3D,
and for PositionVector3D from an arbitrary PositionVector3Dor DisplacementVector3D,
are provided (the other vector may use different coordinate system). While these cases would
be handled properly by the constructors from arbitrary foreign vectors, that route would
always involved conversion to Cartesian coordinates and then to the desired coordinates.
These constructors can take advantage of ways to go directly from one coordinate system
to another.

The 3-D vector classes have three signatures of SetCoordinates methods, allowing the
user to either directly provide the three coordinates, to provide a C-style array of Scalars,
or provide iterators that behave like an array of coordinates.

void SetCoordinates(Scalar a, Scalar b, Scalar c);

void SetCoordinates(Scalar src[]);

template<class IT>

void SetCoordinates(IT begin, IT end);

As is the case for constructors taking three coordinates: the meaning of each coordinate
supplied depends on which coordinate system was specified.

Corresponding GetCoordinates methods are present:

void GetCoordinates(Scalar& a, Scalar& b, Scalar& c) const;

template<class IT>

void GetCoordinates(Scalar dst[]) const;

void GetCoordinates(IT begin, IT end) const;

A method to set the vector given X, Y, and Z coordinates (which will be transformed
into the coordinate system used for that vector) is present:

void SetXYZ(Scalar& x, Scalar& y, Scalar& z);

Each of these classes has the coordinate access methods shared by all the 3-D coordinate
systems (repeated here for convenience):

X()

Y()

Z()

R()

Theta()

Phi()

Rho()

Eta()

Mag2() ≡ r2

Perp2() ≡ ρ2

x() ≡ x

y() ≡ y

z() ≡ z

In addition, lower-case spellings of all the above member functions are provided, to allow
code that expects a CLEHP ThreeVector to use these classes in its place.

r()

3.1 DisplacementVector3D and PositionVector3D 11

theta()

phi()

rho()

eta()

mag2()

perp2()

Each 3-D vector class contains three member functions taking a Scalar agument, to
set the value of one individual component used in the coordinate representation, leaving
the other two unchanged. The set of such functions applicable depends, of course, on the
coordinate system in use:

Cartesian3D has SetX(), SetY() and SetZ().

Polar3D has SetR(), SetTheta() and SetP{hi().

CylindricalEta3D has SetRho(), SetEta() and SetPhi().

Attempts to use a set method which is not present in the specified coordinate system will
not compile.

3.1.2 DisplacementVector3D Manipulation

DisplacementVector3D has a const member function Unit() (along with the compatibility
spelling unit() which returns a unit vector in the direction of this vector.

The dot and cross products of two DisplacementVector3Ds, or indeed of a DisplacementVector3D
with any object having methods x(), y(), and z(), are provided:

template< class OtherVector >

Scalar Dot(const OtherVector & v) const;

template <class OtherVector>

DisplacementVector3D Cross(const OtherVector & v) const;

Because there is ambiguity over what the overload of operator* of two vectors ought to
mean, this package provides the unambiguous Dot() and Cross() methods and does not
provide operator*(const DisplacementVector3D&) as an alias for either.

Two DisplacementVector3Dsmay be added or subtracted, resulting in a third DisplacementVector3D.
Operators += and -= have the obvious meanings.

A DisplacementVector3D may be multiplied or divided by a Scalar, with the Scalar

appearing on the left or right for multiplication. Operators *= and /= have the obvious
meanings. The unary minus operator has the same effect as multiplication by −1.

3.1.3 PositionVector3D Manipulation

The dot and cross products of a PositionVector3D with a verbDisplacementV ector3D, or
of almost and any object having methods x(), y(), and z(), are provided:

template< class OtherVector >

Scalar Dot(const OtherVector & v) const;

template <class OtherVector>

DisplacementVector3D Cross(const OtherVector & v) const;

12 3 VECTORS

However, the notion of the dot or cross products of two points is meaningless, so the dot
and cross products of two PositionVector3Ds are made private (thus forbidden).

A DisplacementVector3Ds may be added to a PositionVector3D (in either order) or
subtracted from a PositionVector3D; the result is a PositionVector3D. Operators += and
-= taking a DisplacementVector3D as the added or subtracted vector have the obvious
meanings.

Subtracting one PositionVector3D from another PositionVector3D is valid: The result
is a DisplacementVector3D.

All other vector additions and subtractions involving at least one PositionVector3D are
meaningless and hence not supplied. In particular, two PositionVector3Ds cannot be added
together, and one cannot subtract a PositionVector3D from a verbDisplacementV ector3D.

The notion of multiplying by a scalar is not meaningful, so such methods as scalar
multiplication and division, Unit(), and the unary minus operator are not present for
PositionVector3D.

3.2 LorentzVector

The LorentzVector class template models an abstract 4-component vector in Minkowski
space. The vector is intended to meet the important use-case of modeling a momentum-
energy 4-vector.

The header XYZTVector.h is provided. This simply includes LorentzVector.h and Px-
PyPzE4D.h, and provided a typedef alias:

typedef LorentzVector< Cartesian3D<double> > XYZTVector;

This gives a managable name to this commonly used form (double precision, in rectilinear
coordinates).

3.2.1 Construction and Coordinate Access

Instances of LorentzVector classes are default constructible (the zero vector) and con-
structible from 4 Scalars representing the coordinates to be used; the meaning of the
coordinates depends, of course, on the coordinate system specified.

Templated constructors are provided to construct instances from an arbitrary “foreign”
4-vector. The precondition imposed on this foriegn vector is that it have const methods
x(), y(), z(), and t(). In particular, the CLHEP HepLorentzVector class meets this
condition, so LorentzVector can be constructed from an object of that CLHEP class.

Explicit constructors for LorentzVector from an arbitrary LorentzVector are provided
(the other vector may use a different coordinate system). While these cases would be handled
properly by the constructors from arbitrary foreign vectors, that route would always involved
conversion to rectilinear coordinates and then to the desired coordinates. These constructors
can take advantage of ways to go directly from one coordinate system to another.

LorentzVector has three signatures of SetCoordinates methods, allowing the user to
either directly provide the four coordinates, to provide a C-style array of 4 Scalars, or
provide iterators that behave like an array of coordinates.

void SetCoordinates(Scalar a, Scalar b, Scalar c, Scalar d);

void SetCoordinates(Scalar src[]);

template<class IT>

void SetCoordinates(IT begin, IT end);

3.2 LorentzVector 13

As is the case for constructors taking four coordinates: the meaning of each coordinate
supplied depends on which coordinate system was specified.

Corresponding GetCoordinates methods are present:

void GetCoordinates(Scalar& a, Scalar& b, Scalar& c, Scalar& d) const;

template<class IT>

void GetCoordinates(Scalar dst[]) const;

void GetCoordinates(IT begin, IT end) const;

A method to set the LorentzVector given X, Y, Z, and T coordinates (which will be
transformed into the coordinate system used for that vector) is present:

void SetXYZT(Scalar& x, Scalar& y, Scalar& z);

Each of these classes has the coordinate access methods shared by all the 4-D coordinate
systems (repeated here for convenience):

Px()

Py()

Pz()

E()

P() ≡
√

p2
x + p2

y + p2
z

M() ≡
√
E2 − P 2. The positive quare root is used unless the coordinate system has a

mass as one component, in which case M may explicitly be negative.

M2() ≡ m2

P2() ≡ p2

Pt() transverse momentum p⊥ ≡
√

p2
x + p2

y

Perp2() ≡ p2
⊥

Mt() transverse mass mt ≡
√

m2 + p2
⊥

with sign matching m

Mt2() ≡ m2
t

Et() transverse energy E⊥ ≡ Ep⊥/|p|
Et2() ≡ E2

t =

Phi()

Theta()

Eta() ≡ tan−1(p⊥/pz)

An additional coordinate access method is:

Vect() returns a DisplacementVector3D< Cartesian3D<Scalar> > containing the spatial
components (px, py, pz).

Each LorentzVector class contains three member functions taking a Scalar agument,
to set the value of one individual component used in the coordinate representation, leaving
the other three unchanged. The set of such functions applicable depends, of course, on the
coordinate system in use:

PxPyPzE4D has SetPx(), SetPy(), SetPz(), and SetE().

EEtaPhiM4D has SetEta(), SetPhi() SetM(), and SetE().

14 3 VECTORS

PtEtaPhiM4D has SetPt() SetEta(), SetPhi() and SetM().

PtEtaPhiE4D has SetPt() SetEta(), SetPhi() and SetE().

Attempts to use a set method which is not present in the specified coordinate system will
not compile.

In addition, certain alternative and lower-case spellings of the above member functions
are provided, to allow code that expects a CLEHP LorentzVector to use XYZTVector in its
place.

X() ≡ Px

Y() ≡ Py

Z() ≡ Pz

T() ≡ E

R() ≡ P

Rho() ≡ P⊥

x() ≡ Px

y() ≡ Py

z() ≡ Pz

t() ≡ E

px() ≡ Px

py() ≡ Py

pz() ≡ Pz

e()

r()

theta()

phi()

rho()

eta()

perp2()

mag2() ≡ M2()

mag() ≡ M()

3.2.2 LorentzVector Manipulation

The dot product of two LorentzVectors, or of a
verbLorentzV ector with any object having methods x(), y(), z(), and t(), is provided:

template< class Other4Vector >

Scalar Dot(const Other4Vector & v) const;

This dot product is taken using the (−−−+) metric. Every physical (timelike or lightlike)
momentum-energy vector will have a non-negative dot product with itself (which, in fact,
will be equal to M2()).

Also provided are the invariant mass squared and invariant mass of the combination of
this 4-vector and another:

3.2 LorentzVector 15

template< class Other4Vector >

Scalar InvariantMass2(const Other4Vector & v) const;

template< class Other4Vector >

Scalar InvariantMass2(const Other4Vector & v) const;

Two LorentzVectors may be added or subtracted, resulting in a third LorentzVector.
Operators += and -= have the obvious meanings.

A LorentzVectormay be multiplied or divided by a Scalar, with the Scalar appearing
on the left or right for multiplication. Operators *= and /= have the obvious meanings. The
unary minus operator has the same effect as multiplication by −1. Note that this is not the
same as multiplying each coordinate by −1.

3.2.3 Relativistic Properties of LorentzVectors

A limited set of common relativistic properties is provided. The first two return Scalars
involving rapidity:

Rapidity() The classical rapidity 1

2
log E+pz

E−pz

. This is less useful than the pseudorapidity
η but still sometimes required.

ColinearRapidity() The rapidity in the direction of motion tanh−1(|~p|/E).

Then there are three functions returning bool answers about the nature of the momentum-
energy 4-vector:

isTimelike() The momentum-energy 4-vector describing an ordinary particle is timelike.

isSpacelike() The momentum-energy 4-vector describing a tachyonic particle is spacelike.

isLightlike() The momentum-energy 4-vector describing a photon is lightlike. Because
roundoff will often prevent exact equality between the energy and the square
of the momentum, this member function accepts an optional argument to
specify tolerance (an acceptable difference level, relative to the value of the
energy). The tolerance defaults to 100 times the machine epsilon for the
Scalr type used.

Then there are methods to learn about boosts to various center-of-mass frames. Since
the LorentzVector class does not know about the Boost class, any boost answer is provided
as a cartesian displacement 3-vector (using the same Scalar type as the LorentzVector)

representing ~β. Such a vector is well-suited for constructing a Boost. In the list below, we
will use the alias BetaVector for that type.

typedef DisplacementVector3D< Cartesian3D<Scalar> > BetaVector;

BetaVector BoostToCM () const;

template <class Other4Vector>

BetaVector BoostToCM (const Other4Vector& v) const;

For example, BoostToCM() provides a beta vector which, if supplied to construct a Boost,
would yield a Boost which would bring this 4-vector into its rest frame. Asuming the
4-vector is timelike, β-vectors will be of length less than 1.

Finally, there are provided global functions taking a std::vector of LorentzVectors (nec-
essarily using the same coordinate systems since they are all together in a std::vector), and
returning properties of the aggregate of those 4-vectors:

16 3 VECTORS

template <class L>

typename L::Scalar InvariantMass2 (std:vector<L> & V) const;

template <class L>

BetaVector BoostToCM (std:vector<L> & V) const;

3.2.4 Peculiar LorentzVectors

Because of the nature of Minkowski coordinates (with a non-positive-definite metric) and
the fact that some coordinate systems specify a mass directly, it is possible to have “patho-
logical” LorentzVectors. These can have the following peculiar features:

Tachyonic 4-vectors In the (px, py, pz, E) coordinate system, one can easily specify a 4-vector
whose invariant mass squared m2 ≡ E2 − |p|2 is negative. Such a 4-vector
is perfectly fine when viewed as a point in spacetime, but when taken as
a momentum-energy 4-vector it represents a tachyonic particle. Similarly,
in the (p⊥, η, φ, E) coordinate system a 4-vector can be constructed sup-
plying a (p⊥, η) combination such that the momentum is greater than its
energy. Such a 4-vector again represents a tachyonic particle. If the mass
of a tachyonic 4-vector is requested (member function M()) the package at-
tempts to throw; if this is disabled (as will be the case by default) then it
reverses sign but returns the negative square root value. A similar action
is taken if the transverse mass (Mt()) of a tachyonic 4-vector is requested
and that happens to be imaginary.

Negative Mass In either the (E, η, φ,m) or the (p⊥, η, φ,m) coordinate system a 4-vector
can be constructed supplying a negative mass. This causes no serious prob-
lems, but sequences of operations which might be expected to propagate
that negative mass to other negative masses may not behave in that way.
Two such situations come to mind: If a negative-mass 4-vector is converted
to (px, py, pz, E) coordinates and that is converted back to the original co-
ordinate system, the mass will now be positive. And if the invariant mass
function is taken, supplying 4-vectors with negative masses, the result will
still be non-negative.

Also, for (p⊥, η, φ,m) coordinates, if a 4-vector has a negative mass, its
transverse mass, energy, and transverse energy will be reported as nega-
tive. (The energy must report as negative, otherwise if ~v2 is expressed in
(p⊥, η, φ,m) coordinates, then ~v1 − ~v2 6= ~v1 + (−~v2)).

Negative Energy In the (E, η, φ,m) coordinate system a 4-vector can be constructed supply-
ing a negative energy. As is the case for negative mass, If such a 4-vector
is converted to other coordinates and back, the energy will now be posi-
tive. And if energy is explicitly set to be negative, transverse energy will
be reported as negative.

Imaginary Momentum(!) In the (E, η, φ,m) coordinate system a 4-vector can be constructed sup-
plying mass greater than its energy. The constructor for such an object
will attempt to throw; the imaginary-momentum 4-vector will come into
existance only if GenVector throws are disabled. In such a case, p, p⊥
and possibly Et are formally imaginary, and if any of those are requested,
a throw is attemped and calls to std::sqrt() on a negative argument
can occurs. In addition, P2() and possibly Et2() are capable of return-
ing negative values. And if such a 4-vector is converted to either of the
other coordinate systems (where momentum values are needed) a throw is
attempted and calls to std::sqrt() on a negative arguments can occur.

3.3 DisplacementVector2D and PositionVector2D 17

3.3 DisplacementVector2D and PositionVector2D

The DisplacementVector2D class template models an abstract 3-component direction-and-
magnitude displacement vector.

The header XYVector.h is provided to include DisplacementVector2D.h along with Carte-
sian2D.h, and provide a typedef alias:

typedef DisplacementVector2D<Cartesian2D> XYVector;

3.3.1 Construction and Coordinate Access

Instances of DisplacementVector2D are default constructible (the zero vector) and con-
structible from 2 Scalars representing the values of the coordinates.

Templated constructors are provided to construct instances of either of the 2-D vector
classes from an arbitrary “foreign” 2-vector. The precondition imposed on this foriegn vector
is that it have const methods x() and y().

There are three signatures of SetCoordinates methods, allowing the user to either directly
provide the three coordinates, to provide a C-style array of Scalars, or provide iterators that
behave like an array of coordinates.

void SetCoordinates(Scalar a, Scalar b);

void SetCoordinates(Scalar src[]);

template<class IT>

void SetCoordinates(IT begin, IT end);

As is the case for constructors taking two coordinates: the meaning of each coordinate
supplied depends on which coordinate system was specified.

Corresponding GetCoordinates methods are present:

void GetCoordinates(Scalar& a, Scalar& b) const;

template<class IT>

void GetCoordinates(Scalar dst[]) const;

void GetCoordinates(IT begin, IT end) const;

A method to set the vector given X, Y coordinates (which will be transformed into polar
coordinates if the vector uses that coordinate system) is present:

void SetXY(Scalar& x, Scalar& y);

DisplacementVector2D has the coordinate access methods shared by the 2-D coordinate
systems (repeated here for convenience):

X()

Y()

R()

Phi()

Mag2() ≡ r2

x() ≡ x

y() ≡ y

In addition, lower-case and laternate spellings of all the above member functions are
provided, to allow code that expects a CLEHP ThreeVector to use these classes in its place.

18 4 TRANSFORMATIONS

r()

phi()

mag2()

Each DisplacementVector2D class contains two member functions taking a Scalar agu-
ment, to set the value of one individual component used in the coordinate representation,
leaving the other one unchanged. The set of such functions applicable depends, of course,
on the coordinate system in use:

Cartesian2D has SetX(), and SetY().

Polar2D has SetR(), and SetP{hi().

Attempts to use a set method which is not present in the specified coordinate system will
not compile.

3.3.2 DisplacementVector2D Manipulation

DisplacementVector2D has a const member function Unit() (along with the compatibility
spelling unit() which returns a unit vector in the direction of this vector.

The dot product of two DisplacementVector2Ds is provided:

template< class OtherVector >

Scalar Dot(const OtherVector & v) const;

template <class OtherVector>

DisplacementVector2D Cross(const OtherVector & v) const;

The cross product of two DisplacementVector2Ds is not a meaningful operation unless
we allow for knowledge of a third dimension. Nonetheless, the scalar magnitude of that
cross product, which is |a||b| sin θab is often useful:

template <class OtherVector>

DisplacementVector2D Cross(const OtherVector & v) const;

Two DisplacementVector2Dsmay be added or subtracted, resulting in a third DisplacementVector3D.
Operators += and -= have the obvious meanings.

A DisplacementVector2D may be multiplied or divided by a Scalar, with the Scalar

appearing on the left or right for multiplication. Operators *= and /= have the obvious
meanings. The unary minus operator has the same effect as multiplication by −1.

4 Transformations

The transformation classes are provided to represent active transformations which can be
applied to vectors of the appropriate dimension. The classes include various flavors of
3-D and 2-D rotations, and of ”Lorentz rotations” transforming 4-vectors in Minkowski
space. In 3 dimensions, there are also transformations that allow for translations and/or
inhomogeneous scaling.

We will refer to transformations as being in the same group if the represent the same
notion in the same number of dimensions. For example, Rotation3D and AxisAngle are in
the same group, but neither Transformation3D nor LorentzRotation are in that group.

The transformation classes are not class templates: Different ways to represent a rotation
(for example) are expressed as different classes.

4.1 Rotations 19

The Scalar type used for the component data in all representations is double. Every
transformation class publishes a typedef for Scalar which will be double.

There are various ways of constructing each transformation class. In all cases, the set
of assignment operators matches the set of constructors taking single arguments. There is
a collection of SetComponents() methods matching the ways to construct the matrix, and
GetComponents() methods matching those.

The transformation classes are each equality comparable (operator == and operator !=)
but only with objects or the identical class. Checks for equivalence of two transformations
of the same group can be done by explicitly converting one to the type of the other. Also, in
some cases there are multiple possible representations for equivalent rotations (for example,
an AxisAngle has the same physical meaning if both the axis and the angle are negated) –
in such cases, the equivalent rotations may fail to indicate equality.

4.1 Rotations

A (3D) Rotation object is an object which can be applied to any 3-vector of Lorentz vector
to yield another vector of the same type representing the result of a homogenous, length-
preserving linear transformation (a rotation). Two syntaxes are supported:

v2 = R * v1;

v2 = R(v1);

Note that “left multiplication” of a vector times a rotation is not supported. Thus to get
the conjugate product of a pair of vectors with respect to some rotation one can do:

double a = v1 * (R * v2);

double b = v1 * R(v2);

double c = v1 * R * v2; // error - v1*R is not supported

All the rotation objects represent active rotations, that is, they may be applied to a
vector to change it into a new vector in the same coordinate system.

There are four 3D rotation classes, representing general rotations in 3 dimensions in four
different ways:

Rotation3D The familiar 3x3 orthogonal matrix representation. This form has nine
components, and is the optimal form for applying a rotation to a vector.

AxisAngle The rotation is represented by a unit-vector axis of rotation, and an angle of
rotation about that axis (a total of four components). This form is a good
match with physicists’ mental model of a rotation, but both application
to vectors and multiplication of rotations involve computing trigonometric
functions.

EulerAngles The three-angle expression for a rotation is the minimal amount of data
(three components) to describe a general rotation. Operations involving
Euler angles tend to be more costly than those involving other representa-
tions.

Quaternion The quaternion representation of a rotation involves four components (which
must add in quadrature to unity) which are coefficients of four 2 × 2 com-
plex matrices labelled (u, i, j, k). (These are familiar as the Pauli spin
matrices, plus the unit matrix.) The quaternion representation is optimal
for multiplying rotations, and ideal for expressing the “distance” between
two rotations, but is slower than the matrix representation for applying a
rotation to a vector.

20 4 TRANSFORMATIONS

There are 3 additional classes, representing specialized rotations about the X, Y, and Z
axes.

RotationX

RotationY

RotationZ

These are very efficient to apply to vectors. Although they have just one formal component
(the angle of rotation) they also hold the cosine and sine of the angle of rotation for optimum
speed in application. In discussions below, we will call these “axial rotations.”

RotationZ has the special property that it can be used as a 2-D rotation,
that is, you can apply a RotationZ to a DisplacementVector2D or a PositionVector2D.

4.1.1 Construction and Component Access

All rotations are default constructible (giving the identity or trival rotation) and copy con-
structible.

All rotations are constructible taking a number of Scalar arguments matching the num-
ber (and order) of components. In addition, all rotations other than axial rotations are
constructible from (begin, end) iterators that behave like iterators (or pointers) to an array
of the appropriate number of Scalar components. These two constructors are “raw”, in the
sense that the components are used unchecked, and the user is responsible for ensuring that
they meet whatever conditions are necessary for the given type of rotation representation.

All rotations except the specialized axis rotations are constructible from any other type
of rotation (including the specialized ones). These single-argument constructors are declared
explicit.

All rotations are capable of application (either operator* or operator()), on any DisplacementVector3D,
PositionVector3D, or LorentzVector3D. Rotations are also capable of application on an
arbitary foriegn vector, as long as that vector has const methods x(), y(), and z() to provide
its Cartesian coordinates, and a constructor taking three Cartesian coordinates. The result
of applying a rotation to a vector is a vector of the same type.

Each rotation class has a Rectify() method, to take an instance whose components
may have drifted from perfectly satisfying the conditions needed for a true rotation (or-
thonormality in the case of Rotation3D, for example) and correct it to a true rotation in
that representation.

Each rotation class has additional constructors and component access methods particular
to that representation. In the list below, arguments are always Scalars passed by value,
except in the case of the axis for AxisAngle which is passed by const reference, and in the
case of all GetComponents() methods, which use non-const references.

Rotation3D Construction, assignment, SetComponents and GetComponents using an
abritrary foreign linear algebra matrix object. The requirements on the ma-
trix object’s class is that it have const and non-const operator()(int i, int j)

where i and j run from 0 to 2. The operator()(int i, int j) methods
must return a Scalar or const reference to a Scalar, or for GetComponents,
a non-const reference to a Scalar. For SetComponents, the constructor is
“raw”: The compnents are accepted as is, without any rectification step.

Construction, assignment, SetComponents and GetComponents taking three
references to vectors. For SetComponents, the class used for the

4.1 Rotations 21

vector objects must have methods x(), y(), and z() return-
ing values (or refernces) which can be used as Scalars. For
GetComponents, the class used for the vector objects must have
a constructor accepting three Scalars. For constructing or set-
ting a Rotation3D, the vectors should be at least roughly orthonormal; the
rotation will be rectified to correct for deviations from orthonormality.

AxisAngle Construction, assignment, SetComponents and GetComponents taking a
vector to be used as the axis followed by a Scalar to be used as the angle
of rotation(in radians). The class used for the vector object must have
methods x(), y(), and z() returning Scalars or const references to Scalars,
or for GetComponents, non-const references to Scalars. For constructing or
setting an AxisAngle, the angle is given in radians, and the vector must be
non-zero; the rotation will be rectified to hold a unit vector.

Const methods XYZVector Axis() and Scalar Angle().

EulerAngle Construction, assignment, SetComponents and GetComponents taking three
Euler angles (φ, θ, ψ). The Euler angle conventions used match those of
CLHEP Vector.

Const methods Phi(), Theta() and Psi() returning Scalars.

Quaternion Construction, assignment, SetComponents and GetComponents taking four
quaternion components which we label (U, I, J, K). These are the coef-
ficients of the identity matrix and the three Pauli matrices in this quater-
nion. For constructing or setting a Quaternion, the sum of the squares
of the components should be (at least roughly) unity; the components will
be rectified to leave a unit 4-vector. The relation between the quaternion
representation and the Axis/angle representation of the equvalent rotation
is that the axis is a unit vector in the direction of ~q = (i, j, k) and the
rotation angle is given by |~q| = sin(θ/2) and u = cos(θ/2).

Const methods U(), I(), J() and K() returning Scalars.

RotationX Construction, assignment, SetComponents and GetComponents taking the
angle of rotation about the X axis.

Const method Angle() returning a Scalar in the range (−π, pi).
Const methods SinAngle() and CosAngle() returning Scalars.

RotationY Construction, assignment, SetComponents and GetComponents taking the
angle of rotation about the Y axis.

Const method Angle() returning a Scalar in the range (−π, pi).
Const methods SinAngle() and CosAngle() returning Scalars.

RotationZ Construction, assignment, SetComponents and GetComponents taking the
angle of rotation about the Z axis.

Const method Angle() returning a Scalar in the range (−π, pi).
Const methods SinAngle() and CosAngle() returning Scalars.

4.1.2 Manipulation of Rotations

Each class representing rotations has member functions Invert() for in-place inversion and
Inverse() to return an object of the same kind which is the inverse of the original.

There is a free function double Distance(r1, r2) where r1 and r1 are instances of
(not necessarily the same) rotation classes. This returns the minimal opening angle between

22 4 TRANSFORMATIONS

the 3-sphere representations of the two rotations (the (i, j, k) parts of their quaternion
representations). The distance is zero for equivalent rotations and can be no greater than
π/2.

Two rotation objects of the identical type can be equality compared. This does a simple
test for equal components. (If some sequence of operations have brought the two into some
state where they use different component values but represent equivalent rotations, the two
rotations may compare as being unequal.)

Any two rotations R and S can be multiplied. The meaning is that if ~v is a vector,
(R ∗S)(~v) = R(S(~v)). The product of two rotations of identical type is expressed as a third
rotation of that same type.

Multiplication of two rotations of different types, R * S, returns:

• A rotation of the same type as R if R is not an axial rotation.

• A rotation of the same type as S if R is an axial rotation but S is not.

• The product of two axial rotations will return a Rotation3D.

Any rotation other than an axial rotation may be post-multiplied (operator *=()) by
any other rotation. Axial rotations may be post-multiplied only by a rotation of the identical
type.

4.1.3 Euler Angles Convention

A note about conventions for EulerAngles:

There are quite a few possible conventions for the meanings (and orderings) of the three
Euler angles (φ, θ, ψ). The choice made for CLHEP, which the GenVector package will
follow, is that of Goldstein in Classical Mechanics. Unfortunately, Goldstein uses passive
rotations (that is, considers the unrotated vector, expressed in rotated coordinate axes).
This is a potential source of confusion since the preference of HEP software–adhered to in
the GenVector package–is for active rotations.

We here unambiguously define what we mean by a rotation E = EulerAngles(phi,theta,psi):
If we apply E to a vector ~v then the resulting vector is given by A~v where A is the matrix





cosψ cosφ− sinψ cos θ sinφ cosψ sinφ+ sinψ cos θ cosφ sinψ sin θ
− sinψ cosφ− cosψ cos θ sinφ − sinψ sinφ+ cosψ cos θ cosφ cosψ sin θ

sin θ sinφ − sin θ cosφ cos θ





This is the definition given in Goldstein, equation (4-46), but in this package the meaning
is that of forming a new vector in the existing coordinate system, rather than that of
rotating the coordinate system by some angles and expressing the original vector in the new
coordinates.

4.2 LorentzTransformations

A LorentzRotation is an object which can be applied to any LorentzVector to yield another
LorentzVector of the same type representing the result of a homogenous, norm-preserving
linear transformation, using a norm with a (−−−+) metric:

s2 ≡ (δt)2 − (δx)2 − (δy)2 − (δz)2

Such transformations are general Lorentz transformations. (Note that we take c = 1 in
these discussions.)

4.2 LorentzTransformations 23

Every physicist is familiar with Lorentz boosts, which are “rotations” involving time and
one space direction. There is time dilation by a factor of γ and length contraction in the
direction of motion by that same factor. These are a special case of the general Lorentz
transformation, and are represented in this package by the class Boost. The package also
includes further-specialized axial boosts BoostX, BoostY, and BoostZ.

Another special type of Lorentz transformation is a 3-D rotation. The GenVector package
does not provide separate classes to represent a pure space rotation as applied to 4-vectors;
the existing 3-D Rotation classes serve that purpose.

The most general form of a Lorentz transformation can be thought of as a combination of
a rotation and a boost (in either order, though the precise values of the two transformations
will depend on which order you choose).

Two syntaxes for applying a LorentzRotation to a LorentzVector (or any arbitrary
foreign vector with methods x(), y(), z() and t() and a constructor taking
(x,y,z,t)) are supported:

p2 = L * p1;

p2 = L(p1);

Note that “left multiplication” of a Lorentz vector times a Lorentz rotation is not supported.

There is one class representing general Lorentz rotations:

LorentzRotation The 4x4 orthosymplectic matrix representation of a Lorentz transformation.
This form has sixteen components, and applying this to 4-vector is the same
as (right-) multiplication by that 4x4 matrix.

There is an additional class, representing the special case of pure boosts along arbitrary
directions:

Boost A pure boost, which in principle can be characterised by just 3 compo-
nents of a vector ~β = ~v/c, is nonetheless kept as a 4x4 orthosymplectic
matrix, because this form is optimal for application to a 4-vector and for
combination with other boosts, rotations, and Lorentz rotations.

There are 3 additional classes, representing specialized boosts along the X, Y, and Z
axes.

BoostX

BoostY

BoostZ

These are very efficient to apply to 4-vectors. Although they have just one formal compo-
nent, they hold both β and γ for optimum speed in application. In discussions below, we
will call these “axial boosts.”

4.2.1 Construction and Component Access

All Lorentz transformations are default constructible (giving the identity or trival transfor-
mation) and copy constructible.

All Lorentz transformations are constructible taking a number of Scalar arguments
matching the number (and order) of components: The sixteen matrix components for a

general transformation, the three ~β components for a pure boost, and just β for an axial

24 4 TRANSFORMATIONS

boost. In addition, all Lorentz rotations other than axial rotations are constructible from
(begin, end) iterators that behave like iterators (or pointers) to an array of the appro-
priate number of Scalar components. In the case of the general LorentzRotation, these
two constructors are “raw”, in the sense that the components are used unchecked, and the
user is responsible for ensuring that they meet the orthosymlectic condition: The last (T)
row, considered as a 4-vector, must have has t2 − |~v|2 = 1, each of other rows must have
t2 − |~v|2 = −1, and the Minkowski space dot product of any two distinct rows must be zero.

The general LorentzRotation is constructible from any Lorentz transformation class, or
any rotation class. Boost is constructible from any axial boost class. These single-argument
constructors are declared explicit.

All Lorentz transfomations are capable of application (either operator* or operator()),
on any LorentzVector regardless of which 4-D coordinates are used.

Lorentz transfomations are also capable of application on an arbitary foriegn 4-vector,
as long as that 4-vector has const methods x(), y(), z() and t() to provide its Cartesian
coordinates, and a constructor taking four Cartesian coordinates in that order. The result
of applying a Lorentz transfomation to a vector is a vector of the same type.

Each Lorentz transfomation class has a Rectify() method, to take an instance whose
components may have drifted from perfectly satisfying the conditions needed for for a true
Lorentz transformation and correct it. This method is trivial for an axial boost.

Each Lorentz transformation class has additional constructors and component access
methods particular to that type of transformation. In the list below, arguments are always
Scalars passed by value, except in the case of BetaVector() for Boost, which is passed
by const reference, and in the case of all GetComponents() methods, which use non-const
references.

LorentzRotation Construction, assignment, SetComponents and GetComponents using an
abritrary foreign linear algebra matrix object. The requirements on the ma-
trix object’s class is that it have const and non-const operator()(int i, int j)

where i and j run from 0 to 3. The operator()(int i, int j) methods
must return a Scalar or const reference to a Scalar, or for GetComponents,
a non-const reference to a Scalar. For SetComponents, the constructor is
“raw”: The components are accepted as is, without any rectification step.

Construction, assignment, SetComponents and GetComponents taking four
references to 4-vectors. For SetComponents, the class used for the
4-vector objects must have methods x(), y(), z() and t() re-
turning Scalars or const references to Scalars. For GetComponents,
the class used for the 4-vector objects must have a construc-
tor taking four Scalars for x, y, z, and t in that order. For
constructing or setting a LorentzRotation, the vectors should be at least
roughly orthosymplectic; the transformation will be rectified to correct for
deviations from the orthosymplectic conditions.

Construction, assignment, SetComponents and GetComponents taking a
rotation and a Boost in either order. The meaning is that L(R,B) is
L(R)*L(B)while L(B,R) is L(B)*L(R). GetComponents(R,B)and GetComponents(B,R)

have to do non-trival work, but the answer is unambiguous.

Boost Construction, assignment, SetComponents and GetComponents taking three
Scalars to use as βx, βy, βz .

Explicit construction and assignment taking an object of any DisplacementVector3D
class, or a foreign vector implementing x(), y() and z(). This is used as

the vector ~β characterizing the boost.

4.2 LorentzTransformations 25

A const accessor BetaVector() returning \vec{\beta} as a DisplacementVector3D<
Cartesian3D< Scalar> >.

Gamma(), giving the time-dilation factor for the boost.

Although, for efficiency in applying the boost to 4-vectors, components of a
symmetric 4 by 4 matrix representing the boost are held, these are treated
as private implementation details. However (for optimum performance
when constructing a LorentzRotation from a Boost) there is a method
GetLorentzRotation (Scalar & r) which fills the sixteen elements of a
Lorentz ROtation representation.

BoostX Construction, assignment, SetComponents and GetComponents taking one
Scalar to use as βx.

Gamma(), giving the time-dilation factor for the boost.

BoostY Construction, assignment, SetComponents and GetComponents taking one
Scalar to use as βy.

Gamma(), giving the time-dilation factor for the boost. item [BoostZ]
Construction, assignment, SetComponents and GetComponents taking one
Scalar to use as βz.

Gamma(), giving the time-dilation factor for the boost.

4.2.2 Manipulation of Lorentz Transformations

Each class representing Lorentz transformations has member functions Invert() for in-
place inversion and Inverse() to return an object of the same kind which is the inverse of
the original.

There is a free function double Distance(L1, L2) where L1 and L1 are instances of
(not necessarily the same) Lorentz transformation classes. This forms L1L

−1

2 , decomposes
that into a rotation and a pure boost, and returns the sum in quadrature of the distance
between the distance from unity of the rotation and the |β| of the pure boost. (This function
has the desired properties in a distance: It is independant of the order [or for that matter
the order of decomposition into boost and rotation], is zero for identical transformations, is
unaffected by Lorentz coordinate transformationsations, and obeys the triangle inequalities.)

Two Lorentz transformation objects of the identical type can be equality compared. This
does a simple test for equal components.

Any two Lorentz transformations R and S can be multiplied. The meaning is that if
~v is a vector, (R ∗ S)(~v) = R(S(~v)). The product of two axial boosts of identical type is
expressed as a third axial boost of that same type; in all other cases the result is expressed
as a general LorentzRotation. In particular, the product of two pure Boosts is a general
LorentzRotation, not another Boost.

Any Lorentz transformation can be multiplied on the right or left by any rotation; the
result in all cases will be a LorentzRotation.

Any Lorentz transformation may be post-multiplied (operator *=()) by another Lorentz
transformation or rotation if and only if the resutl of multiplying the two (as detailed above)
is the same type as that of the first Lorentz transformation. Axial boosts, for example, may
be post-multiplied only by axial boosts of the identical type.

26 5 FREQUENTLY ASKED QUESTIONS

5 Frequently Asked Questions

1. In CLHEP, we could construct a HepRotation from an axis and an angle. How is that
done here?

This is done by saying what we mean:

XYZVector axis; double angle; // the desired components

Rotation3D r (AxisAngle(axis,angle));

Similarly, we can construct a Rotation3D from Euler angles.

2. I’d like to equality-compare two rotations of the same type, but I don’t want equivalent
representations of the same actual rotation to appear to be unequal. How is that done?

The best way is to use the Distance method:

AxisAngle a1, a2;

if (Distance(a1,a2) < 1.0e-15) { ... }

Note that we suggest you check using some small tolerance rather than zero; as is
usual for real arithmetic, roundoff can cuase two numbers calculated in mathematically
equivalent ways to compare as unequal using exact equality.

